
Ruby on Rails – Set up 1/18

Ruby on Rails – Installation
http://www.tutorialspoint.com/ruby-on-rails/rails-installation.htm

This tutorial will guide you to set up a private Ruby on Rails environment in the “daw” server.

Step 0: Login to the daw server

a999999@australia:~$ ssh a999999@10.10.23.183

Step 1: Install rbenv

a999999@daw:~$ git clone git:// github.com/sstephenson/rbenv.git .rbenv
a999999@daw:~$echo 'export PATH="$HOME/.rbenv/bin:$ PATH"' >> ~/.bash_profile
a999999@daw:~$echo 'eval "$(rbenv init -)"' >> ~/.b ash_profile

a999999@daw:~$git clone git:// github.com/sstephenson/ruby-build.git
~/.rbenv/plugins/ruby-build
a999999@daw:~$echo 'export PATH="$HOME/.rbenv/plugi ns/ruby-build/bin:$PATH"' >>
~/.bash_profile

a999999@daw:~$echo "export PATH=~/.gem/ruby/2.2.0/b in:\$PATH" >> ~/.bash_profile
a999999@daw:~$echo "export GEM_HOME=~/.gem/ruby/2.2 .0/gems" >> ~/.bash_profile
a999999@daw:~$echo "export GEM_PATH=~/.gem/ruby/2.2 .0" >> ~/.bash_profile

a999999@daw:~$source ~/.bash_profile

Step 2: Install Ruby

Bofore install Ruby, First determine which version of ruby that you
want to install. We will install Ruby 2.2.3. Use the following command
for installing Ruby 2.2.3.

a999999@daw:~$ rbenv install --list
a999999@daw:~$ rbenv install -v 2.2.3
a999999@daw:~$ rbenv global 2.2.3
a999999@daw:~$ ruby -v

a999999@daw:~$ echo "gem: --no-document" > ~/.gemrc
a999999@daw:~$ echo "gem: --user-install" >> ~/.gem rc

Step 3: Install Rails

The following command for installing rails of 4.2.4 version

a999999@daw:~$ git clone git://github.com/jmatbasto s/ruby_on_rails.git .gem
a999999@daw:~$cd ~/.gem/ruby/2.2.0/bin

In the following command replace “a12345” with your login

a999999@daw:~/.gem/ruby/2.2.0/bin$ for file in `ls` ; do cat $file | sed
s/a999999/a12345/ > ${file}.tmp ; mv ${file}.tmp $f ile ; chmod a+x $file; done

a999999@daw:~/.gem/ruby/2.2.0/bin$ cd

a999999@daw:~$ gem install bundler
a999999@daw:~$ gem install --version '>=5.1' minite st

Ruby on Rails – Set up 2/18

Use the following command to make rails executable available.

a999999@daw:~$ rbenv rehash

Use the following command for checking the rails version.

a999999@daw:~$ rails –v

Step 4: Installation Verification

You can verify if everything is setup according to your requirements
or not. Use the following command to create a demo project.

a999999@daw:~$ cd public_html
a999999@daw:~/public_html$ rails new demo

a999999@daw:~/public_html$ cd demo

In the following commands replace “12345” with your student number

a999999@daw:~/public_html/demo$ rails server -p 123 45 –b 10.10.23.183

Now open your browser and type the following address text box.

http://10.10.23.183:12345

Ruby on Rails – Set up 3/18

Ruby on Rails – library site
http://www.tutorialspoint.com/ruby-on-rails/rails-i nstallation.htm

Step 1: New project “library”

 Use the following command to create a library project.

a999999@daw:~$ cd public_html
a999999@daw:~/public_html$ rails new library

a999999@daw:~/public_html$ cd library

In the following commands replace “12345” with your student number

a999999@daw:~/public_html/library$ rails server -p 12345 –b 10.10.23.183

Now open your browser and type the following address text box.

http://10.10.23.183:12345

Step 2: Configure the access to the mysql database

At this point, you need to let Rails know about the user name and password for the databases. You do this in
the file database.yml , available in the library/config subdirectory of Rails Application you created. This file
has live configuration sections for MySQL databases. In each of the sections you use, you need to change the
username and password lines to reflect the permissions on the databases you've created.

When you finish, it should look something like this (change a12345 with your login)

development:

 adapter: mysql

 database: db_a12345

 username: a12345

 password: [password]

 host: 10.10.23.13

Step 3: Translating a Domain Model into SQL

Translating a domain model into SQL is generally straight forward, as long as you remember that you

have to write Rails-friendly SQL. In practical terms, you have to follow certain rules:

• Each entity (such as book) gets a table in the database named after it, but in the plural (books).

• Each such entity-matching table has a field called id, which contains a unique integer for each record

inserted into the table.

• Given entity x and entity y, if entity y belongs to entity x, then table y has a field called x_id.

Ruby on Rails – Set up 4/18

• The bulk of the fields in any table store the values for that entity's simple properties (anything that's a

number or a string).

a999999@daw:~/public_html/library$ rails generate m odel Book

a999999@daw:~/public_html/library$ rails generate m odel Subject

Step 4: Creating Associations between Models

When you have more than one model in your rails application, you would need to create connection

between those models. You can do this via associations. Active Record supports three types of

associations −

• one-to-one − A one-to-one relationship exists when one item has exactly one of another item. For

example, a person has exactly one birthday or a dog has exactly one owner.

• one-to-many − A one-to-many relationship exists when a single object can be a member of many

other objects. For instance, one subject can have many books.

• many-to-many − A many-to-many relationship exists when the first object is related to one or more

of a second object, and the second object is related to one or many of the first object.

You indicate these associations by adding declarations to your models: has_one, has_many,

belongs_to, and has_and_belongs_to_many.

To do so, modify app/models/book.rb and app/models/subject.rb to look like this −

class Book < ActiveRecord :: Base

 belongs_to : subject

end

class Subject < ActiveRecord :: Base

 has_many : books

end

Step 5: Implementing Validations on Models

The implementation of validations is done in a Rails model. The data you are entering into the

database is defined in the actual Rails model, so it only makes sense to define what valid data entails

in the same location.

The validations are −

Ruby on Rails – Set up 5/18

• The value of title field should not be NULL.

• The value of price field should be numeric.

Open book.rb in the app/model subdiractory and put the following validations

Step 6: Create the Migrations

We will create two migrations corresponding to our two tables − books and subjects.

Books migration should be as follows −

a999999@daw:~/public_html/library$ rails generate migration books

a999999@daw:~/public_html/library$ rails generate migration subjects

Step 7: Create the tables

Go to db/migrate subdirectory of your application and edit each file one by one using any simple text

editor.

Modify 20151234567890_books.rb as follows −

class Books < ActiveRecord::Migration

 def self.up

 create_table :books do |t|

 t.column :title, :string, :limit => 32, :n ull => false

 t.column :price, :float

 t.column :subject_id, :integer

 t.column :description, :text

 t.column :created_at, :timestamp

 end

 end

 def self.down

 drop_table :books

 end

end

Modify 20151234567890_subjects.rb as follows −

Ruby on Rails – Set up 6/18

class Subjects < ActiveRecord::Migration

 def self.up

 create_table :subjects do |t|

 t.column :name, :string

 end

 Subject.create :name => "Physics"

 Subject.create :name => "Mathematics"

 Subject.create :name => "Chemistry"

 Subject.create :name => "Psychology"

 Subject.create :name => "Geography"

 end

 def self.down

 drop_table :subjects

 end

end

Now create the tables

a999999@daw:~/public_html/library$ export RAILS_ENV =development

a999999@daw:~/public_html/library$ rake db:migrate

Step 8: Generate the controllers

a999999@daw:~/public_html/library$ rails generate controller Books

This command accomplishes several tasks, of which the following are relevant here −

It creates a file called app/controllers/books_controller.rb

Implementing the list Method

The list method gives you a list of all the books in the database. This functionality will be achieved by

the following lines of code. Edit the following lines in books_controller.rb file.

def list

 @books = Book.all

end

Ruby on Rails – Set up 7/18

The @books = Book.all line in the list method tells Rails to search the books table and store each row

it finds in the @books instance object.

Implementing the show Method

The show method displays only further details on a single book. This functionality will be achieved by

the following lines of code.

def show

 @book = Book.find(params[:id])

end

The show method's @book = Book.find(params[:id]) line tells Rails to find only the book that has the

id defined in params[:id].

The params object is a container that enables you to pass values between method calls. For

example, when you're on the page called by the list method, you can click a link for a specific book,

and it passes the id of that book via the params object so that show can find the specific book.

Implementing the new Method

The new method lets Rails know that you will create a new object. So just add the following code in

this method.

def new

 @book = Book.new

 @subjects = Subject.all

end

The above method will be called when you will display a page to the user to take user input. Here

second line grabs all the subjects from the database and puts them in an array called @subjects.

Implementing the create Method

Once you take user input using HTML form, it is time to create a record into the database. To achieve

this, edit the create method in the book_controller.rb to match the following −

def create

 @book = Book.new(book_params)

 if @book.save

 redirect_to :action => 'list'

 else

 @subjects = Subject.all

Ruby on Rails – Set up 8/18

 render :action => 'new'

 end

end

def book_params

 params.require(:books).permit(:title, :price, :subject_id, :description)

end

The first line creates a new instance variable called @book that holds a Book object built from the

data, the user submitted. The book_params method is used to collect all the fields from

object :books . The data was passed from the new method to create using the params object.

The next line is a conditional statement that redirects the user to the list method if the object saves

correctly to the database. If it doesn't save, the user is sent back to the new method. The redirect_to

method is similar to performing a meta refresh on a web page: it automatically forwards you to your

destination without any user interaction.

Then @subjects = Subject.all is required in case it does not save data successfully and it becomes

similar case as with new option.

Implementing the edit Method

The edit method looks nearly identical to the show method. Both methods are used to retrieve a

single object based on its id and display it on a page. The only difference is that the show method is

not editable.

def edit

 @book = Book.find(params[:id])

 @subjects = Subject.all

end

This method will be called to display data on the screen to be modified by the user. The second line

grabs all the subjects from the database and puts them in an array called @subjects.

Implementing the update Method

This method will be called after the edit method, when the user modifies a data and wants to update

the changes into the database. The update method is similar to the create method and will be used to

update existing books in the database.

def update

Ruby on Rails – Set up 9/18

 @book = Book.find(params[:id])

 if @book.update_attributes(book_param)

 redirect_to :action => 'show', :id => @book

 else

 @subjects = Subject.all

 render :action => 'edit'

 end

end

def book_param

 params.require(:book).permit(:title, :price, :subject_id, :description)

end

The update_attributes method is similar to the save method used by create but instead of creating a

new row in the database, it overwrites the attributes of the existing row.

Then @subjects = Subject.all line is required in case it does not save the data successfully, then it

becomes similar to edit option.

Implementing the delete Method

If you want to delete a record from the database then you will use this method. Implement this

method as follows.

def delete

 Book.find(params[:id]).destroy

 redirect_to :action => 'list'

end

The first line finds the classified based on the parameter passed via the params object and then

deletes it using the destroy method. The second line redirects the user to the list method using a

redirect_to call.

Additional Methods to Display Subjects

Assume you want to give a facility to your users to browse all the books based on a given subject.

So, you can create a method inside book_controller.rb to display all the subjects. Assume the method

name is show_subjects −

Ruby on Rails – Set up 10/18

def show_subjects

 @subject = Subject.find(params[:id])

end

Finally your books_controller.rb file will look as follows −

class BooksController < ApplicationController

 def list

 @books = Book . all

 end

 def show

 @book = Book . find (params [: id])

 end

 def new

 @book = Book . new

 @subjects = Subject . all

 end

 def book_params

 params . require (: books). permit (: title , : price , : subject_id ,
: description)

 end

 def create

 @book = Book . new(book_params)

 if @book. save

 redirect_to : action => 'list'

 else

 @subjects = Subject . all

 render : action => 'new'

 end

 end

Ruby on Rails – Set up 11/18

 def edit

 @book = Book . find (params [: id])

 @subjects = Subject . all

 end

 def book_param

 params . require (: book). permit (: title , : price , : subject_id ,
: description)

 end

 def update

 @book = Book . find (params [: id])

 if @book. update_attributes (book_param)

 redirect_to : action => 'show' , : id => @book

 else

 @subjects = Subject . all

 render : action => 'edit'

 end

 end

 def delete

 Book . find (params [: id]). destroy

 redirect_to : action => 'list'

 end

 def show_subjects

 @subject = Subject . find (params [: id])

 end

end

Step 9: Generate routes

Open routes.rb file in library/config/ directory and edit it with the following content.

Rails.application.routes.draw do

 root'books#list'

 get 'books/list'

Ruby on Rails – Set up 12/18

 get 'books/new'
 post 'books/create'

 patch 'books/update'

 get 'books/list'

 get 'books/show'

 get 'books/edit'

 get 'books/delete'

 get 'books/update'

 get 'books/show_subjects'

end

The routes.rb file defines the actions available in the applications and the type of action such as get,

post, and patch.

Step 10: Create views

Now, display the actual content. Let us put the following code into list.html.erb.

<% if @books. blank ? %>

<p>There are not any books currently in the system. </p>

<% else %>

<p>These are the current books in our system </p>

<ul id = "books" >

 <% @books. each do | c| %>

 <%= link_to c . title , {: action => 'show' , : id => c . id } - %>

 <%= link_to “Edit”, {:action => ’edit’, :id => c.id} %>

 <%= link_to "Delete" , {: action => 'delete' , : id => c . id },

 : confirm => "Are you sure you want to delete this item?" %>

 <% end %>

<% end %>

<p><%= link_to "Add new Book" , {: action => 'new' } %></p>

Create a file called new.html.erb using your favorite text editor and save it to app/views/book. Add the

following code to the new.html.erb file.

<h1>Add new book </h1>

Ruby on Rails – Set up 13/18

<%= form_tag : action => 'create' do %>

<p><label for = "book_title" >Title </label> :

<%= text_field 'books' , 'title' %></p>

<p><label for = "book_price" >Price </label> :

<%= text_field 'books' , 'price' %></p>

<p><label for = "book_subject_id" >Subject </label> :

<%= collection_select (: books , : subject_id , @subjects , : id , : name, prompt : true)

%></p>

<p><label for = "book_description" >Description </label>

<%= text_area 'books' , 'description' %></p>

<%= submit_tag "Create" %>

<% end - %>

<%= link_to 'Back' , {: action => 'list' } %>

Create a show.html.erb file under app/views/book and populate it with the following code −

<h1><%= @book. title %> </h1>

<p>

 Price: $ <%= @book. price %>

 Subject : <%= link_to @book. subject . name, : action =>

"show_subjects" , : id => @book. subject . id %>

 Created Date: <%= @book. created_at %>

</p>

<p><%= @book. description %> </p>

<hr />

<%= link_to 'Back' , {: action => 'list' } %>

Ruby on Rails – Set up 14/18

Create a new file called edit.html.erb and save it in app/views/book. Populate it with the following

code −

<h1>Edit Book Detail </h1>

<%= form_for @book, : url =>{: action => "update" , : id =>@book} do | f | %>

<p>Title: <%= f . text_field 'title' %></p>

<p>Price: <%= f . text_field 'price' %></p>

<p>Subject: <%= f . collection_select : subject_id , Subject . all , : id , : name %></p>

<p>Description

<%= f . text_area 'description' %></p>

<%= f . submit "Save changes" %>

<% end %>

<%= link_to 'Back' , {: action => 'list' } %>

Create a new file, show_subjects.html.erb, in the app/views/book directory and add the following

code to it −

<h1><%= @subject . name - %></h1>

 <% @subject . books . each do | c| %>

 <%= link_to c . title , : action => "show" , : id => c . id - %>

 <% end %>

Step 11: Create layout

Add a new file called standard.html.erb to app/views/layouts. You let the controllers know what

template to use by the name of the file, so following a same naming scheme is advised.

Add the following code to the new standard.html.erb file and save your changes −

Ruby on Rails – Set up 15/18

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transi tional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitiona l.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml" >

 <head>

 <meta http-equiv = "Content-Type" content = "text/html; charset = iso-8859-1"

/>

 <meta http-equiv = "Content-Language" content = "en-us" />

 <title> Library Info System </title>

 <%= stylesheet_link_tag "style" %>

 </head>

 <body id = "library" >

 <div id = "container" >

 <div id = "header" >

 <h1>Library Info System </h1>

 <h3>Library powered by Ruby on Rails </h3>

 </div>

 <div id = "content" >

 <%= yield - %>

 </div>

 <div id = "sidebar" ></div>

 </div>

 </body>

</html>

Now open book_controller.rb and add the following line just below the first line −

class BookController < ApplicationController

layout 'standard'

def list

Ruby on Rails – Set up 16/18

@books = Book.all
end

...................

Step 12: Adding Style Sheet

Till now, we have not created any style sheet, so Rails is using the default style sheet. Now let's

create a new file called style.css and save it in /public/stylesheets. Add the following code to this file.

body {

 font - family : Helvetica , Geneva, Arial , sans - serif ;

 font - size : small ;

 font - color : #000;

 background - color : #fff;

}

a: link , a : active , a : visited {

 color : #CD0000;

}

input {

 margin - bottom : 5px ;

}

p {

 line - height : 150%;

}

div #container {

 width : 760px ;

 margin : 0 auto ;

}

div #header {

 text - align : center ;

 padding - bottom : 15px ;

Ruby on Rails – Set up 17/18

}

div #content {

 float : left ;

 width : 450px ;

 padding : 10px ;

}

div #content h3 {

 margin - top : 15px ;

}

ul #books {

 list - style - type : none ;

}

ul #books li {

 line - height : 140%;

}

div #sidebar {

 width : 200px ;

 margin - left : 480px ;

}

ul #subjects {

 width : 700px ;

 text - align : center ;

 padding : 5px ;

 background - color : #ececec;

 border : 1px solid #ccc;

 margin - bottom : 20px ;

}

ul #subjects li {

 display : inline ;

Ruby on Rails – Set up 18/18

 padding - left : 5px ;

}

